Catalysis science, energy, materials and nanoscience
Catalytic materials are central to most industrial processes. We develop novel designs and syntheses of catalysts, adsorbents, and other functional materials especially for the purpose of more sustainable routes to important chemicals and fuels. We frequently collaborate with industry and national laboratories on such projects. We typically synthesize materials by modifying existing particle or MOF surfaces with organic functionalities (e.g. amines or carboxylates), inorganic complexes (e.g. Mn triazacyclononane, Ta calixarenes) or we build up additional, ultra-thin oxide layers. These groups are intended to control isolated or cooperative active sites consisting of acids, bases, redox groups, metals, and designed cavities in ways that can be difficult to engineer with traditional homogeneous or heterogeneous catalysts. The active sites on these new materials are also functional models for spectroscopy and simulation for the development of improved structure-function relationships. It is our guiding hypothesis that increasing control over - and diversity of - the active sites available for heterogeneous catalysts promises to yield new, more selective, and better understood chemical transformations.